Vorhersage von Smoothing Techniques Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die bisherigen Beobachtungen gleich gewichtet werden, erhält die exponentielle Glättung exponentiell abnehmende Gewichte, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose als die älteren Beobachtungen gegeben. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 (n1) OR n (2 - a) a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu beurteilen und zwischen den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. Der einfachste Ansatz wäre, den Durchschnitt von Januar bis März zu nutzen und zu verwenden, um den Umsatz von April8217 zu schätzen: (129 134 122) 3 128.333. Basierend auf dem Umsatz von Januar bis März, Sie prognostizieren, dass der Umsatz im April 128,333 werden. Sobald April8217s tatsächliche Verkäufe hereinkommen, würden Sie dann die Prognose für Mai berechnen, dieses mal using Februar bis April. Sie müssen mit der Anzahl der Perioden übereinstimmen, die Sie für die gleitende durchschnittliche Prognose verwenden. Die Anzahl der Perioden, die Sie in Ihren gleitenden durchschnittlichen Prognosen verwenden, sind beliebig, Sie können nur zwei Perioden verwenden, oder fünf oder sechs Perioden, was auch immer Sie Ihre Prognosen generieren möchten. Der oben genannte Ansatz ist ein einfacher gleitender Durchschnitt. Manchmal können jüngere Monate8217 Verkäufe stärkere Einflussfaktoren des kommenden Monats8217s Verkäufe sein, also möchten Sie jene Annäherungsmonate mehr Gewicht in Ihrem Vorhersagemodell geben. Dies ist ein gewichteter gleitender Durchschnitt. Und genau wie die Anzahl der Perioden sind die Gewichte, die Sie zuweisen, rein willkürlich. Let8217s sagen, Sie wollten geben March8217s Umsatz 50 Gewicht, Februar8217s 30 Gewicht und Januar8217s 20. Dann wird Ihre Prognose für April 127.000 (122.50) (134.30) (129.20) 127 sein. Einschränkungen gleitender Durchschnittsmethoden Gleitende Mittelwerte werden als 8220smoothing8221 Prognosetechnik betrachtet. Weil Sie einen Durchschnitt im Laufe der Zeit nehmen, sind Sie die Erweichung (oder Glättung) der Auswirkungen von unregelmäßigen Ereignissen innerhalb der Daten. Folglich können die Auswirkungen von Saisonalität, Konjunkturzyklen und anderen zufälligen Ereignissen den Prognosefehler drastisch erhöhen. Werfen Sie einen Blick auf ein vollständiges year8217s Wert von Daten, und vergleichen Sie einen 3-Perioden gleitenden Durchschnitt und einen 5-Perioden gleitenden Durchschnitt: Beachten Sie, dass in diesem Fall, dass ich keine Prognosen erstellt, sondern zentriert die gleitenden Durchschnitte. Die ersten dreimonatigen gleitenden Durchschnitt ist für Februar, und es8217s der Durchschnitt von Januar, Februar und März. Ich habe auch ähnlich für die 5-Monats-Durchschnitt. Nun, werfen Sie einen Blick auf die folgende Tabelle: Was sehen Sie, ist nicht die dreimonatige gleitende durchschnittliche Reihe viel glatter als die tatsächlichen Verkaufsreihen Und wie über die Fünf-Monats-gleitenden Durchschnitt It8217s sogar glatter. Daher, je mehr Zeiträume Sie in Ihrem gleitenden Durchschnitt verwenden, desto glatter Ihre Zeitreihen. Daher kann für die Prognose ein einfacher gleitender Durchschnitt nicht die genaueste Methode sein. Gleitende Durchschnittsmethoden erweisen sich als sehr wertvoll, wenn Sie versuchen, die saisonalen, unregelmäßigen und zyklischen Komponenten einer Zeitreihe für fortgeschrittene Prognosemethoden, wie Regression und ARIMA, zu extrahieren und die Verwendung von gleitenden Mittelwerten bei der Zerlegung einer Zeitreihe wird später behandelt in der Serie. Bestimmen der Genauigkeit eines gleitenden Durchschnittsmodells Im Allgemeinen möchten Sie eine Prognosemethode, die den geringsten Fehler zwischen tatsächlichen und vorhergesagten Ergebnissen aufweist. Eine der häufigsten Maßnahmen der Prognosegenauigkeit ist die Mean Absolute Deviation (MAD). Bei dieser Vorgehensweise nehmen Sie für jede Periode in der Zeitreihe, für die Sie eine Prognose erstellt haben, den absoluten Wert der Differenz zwischen dem aktuellen und dem prognostizierten Wert (die Abweichung). Dann durchschnittst du diese absoluten Abweichungen und du erhältst ein Maß von MAD. MAD kann hilfreich bei der Entscheidung über die Anzahl der Perioden, die Sie durchschnittlich, und die Menge des Gewichts, die Sie auf jeder Periode. Im Allgemeinen wählen Sie die eine, die in der niedrigsten MAD resultiert. Hier ist ein Beispiel dafür, wie MAD berechnet wird: MAD ist einfach der Durchschnitt von 8, 1 und 3. Moving Averages: Recap Bei der Verwendung von Moving Averages für die Prognose, denken Sie daran: Moving Durchschnitte können einfach oder gewichtet werden Die Anzahl der Perioden, die Sie für Ihre verwenden Durchschnittlich und alle Gewichte, die Sie jedem zuweisen, sind streng beliebig Bewegungsdurchschnitte glatt machen unregelmäßige Muster in Zeitreihen-Daten, je größer die Anzahl der Perioden für jeden Datenpunkt verwendet, desto größer ist der Glättungseffekt Wegen der Glättung, Prognose nächsten Monat8217s Umsatz auf der Grundlage der Die jüngsten monatlichen Verkäufe können zu großen Abweichungen aufgrund saisonaler, zyklischer und unregelmäßiger Muster in den Daten führen. Die Glättungsfunktionen einer gleitenden Durchschnittsmethode können beim Zerlegen einer Zeitreihe für fortgeschrittene Prognosemethoden nützlich sein. Nächste Woche: Exponentielle Glättung In der nächsten Woche8217s Vorhersage Freitag. Werden wir diskutieren exponentielle Glättung Methoden, und Sie werden sehen, dass sie weit überlegen, gleitende durchschnittliche Prognose Methoden. Immer noch don8217t wissen, warum unsere Forecast Freitag Beiträge erscheinen am Donnerstag Find out at: tinyurl26cm6ma So: Post navigation Lassen Sie eine Antwort Antworten abbrechen Ich hatte 2 Fragen: 1) Können Sie die zentrierte MA Ansatz zur Prognose oder nur für die Beseitigung Saisonalität 2) Wann Verwenden Sie die einfache t (t-1t-2t-k) k MA Prognose einer Periode voraus, ist es möglich, prognostizieren mehr als 1 Periode voraus Ich denke, dann Ihre Prognose wäre einer der Punkte Fütterung in den nächsten. Vielen Dank. Liebe die Infos und Ihre Erklärungen I8217m froh, dass Sie den Blog I8217m sicher mehrere Analytiker haben die zentrierte MA-Ansatz für die Prognose verwendet haben, aber ich persönlich würde nicht, da dieser Ansatz führt zu einem Verlust von Beobachtungen an beiden Enden. Das bindet dann tatsächlich Ihre zweite Frage. Im Allgemeinen wird einfaches MA verwendet, um nur eine Periode vorher zu prognostizieren, aber viele Analytiker 8211 und ich auch manchmal 8211 benutzen meine Einperiode voraus Prognose als einer der Eingaben zur zweiten Periode voran. Es ist wichtig, sich daran zu erinnern, dass je weiter in die Zukunft Sie zu prognostizieren versuchen, desto größer ist das Risiko von Prognosefehler. Dies ist der Grund, warum ich nicht empfehlen zentrierte MA für die Vorhersage 8211 der Verlust der Beobachtungen am Ende bedeutet, dass auf Prognosen für die verlorenen Beobachtungen sowie die Periode (n) voraus zu verlassen, so gibt es größere Chance auf Prognosefehler. Leser: you8217re eingeladen, wiegen in diesem. Haben Sie irgendwelche Gedanken oder Anregungen zu diesem Brian, danke für Ihren Kommentar und Ihre Komplimente auf dem Blog Schöne Initiative und schöne Erklärung. It8217s wirklich nützlich. Ich prognostiziere benutzerdefinierte Leiterplatten für einen Kunden, der keine Prognosen gibt. Ich habe den gleitenden Durchschnitt verwendet, aber es ist nicht sehr genau, da die Industrie auf und ab gehen kann. Wir sehen in Richtung Mitte des Sommers bis zum Ende des Jahres, dass Versand pcb8217s ist. Dann sehen wir am Anfang des Jahres langsam nach unten. Wie kann ich genauer mit meinen Daten Katrina, von dem, was Sie mir gesagt haben, scheint es, dass Ihre Leiterplatten Verkauf haben eine saisonale Komponente. Ich weiß, Adresse Saisonalität in einigen der anderen Forecast Friday Posts. Ein anderer Ansatz, den Sie verwenden können, ist ziemlich einfach der Holt-Winters-Algorithmus, der die Saisonalität berücksichtigt. Hier finden Sie eine gute Erklärung. Achten Sie darauf, festzustellen, ob Ihre saisonalen Muster sind multiplikativ oder additiv, weil der Algorithmus ist etwas anders für jeden. Wenn Sie Ihre monatlichen Daten von wenigen Jahren abbilden und sehen, dass die saisonalen Schwankungen zu gleichen Zeitpunkten im Jahresverlauf konstant zu sein scheinen, dann ist die Saisonalität additiv, wenn die saisonalen Schwankungen im Laufe der Zeit zu steigen scheinen, dann ist die Saisonalität Multiplikativ. Die meisten saisonalen Zeitreihen werden multiplikativ sein. Im Zweifelsfall multiplikativ voraussetzen. Viel Glück Hi there, Zwischen diesen Methoden:. Nave Vorhersage. Aktualisieren des Mittelwerts. Gleitender Durchschnitt der Länge k. Entweder gewichtet Bewegt Durchschnitt der Länge k OR Exponentielle Glättung Welches eines jener Aktualisierung Modelle empfehlen Sie mir mit der Prognose der Daten Für meine Meinung, denke ich über Moving Average. Aber ich don8217t wissen, wie man es klar und strukturiert Es hängt wirklich von der Menge und Qualität der Daten, die Sie haben und Ihre Prognose Horizont (langfristig, mittelfristig oder kurzfristig) 3 Understanding Forecast Ebenen und Methoden Sie können Generieren sowohl Detailprognosen (Einzelposten) als auch Zusammenfassungsprognosen (Produktlinie), die Produktbedarfsmuster widerspiegeln. Das System analysiert die bisherigen Verkäufe, um die Prognosen mit Hilfe von 12 Prognosemethoden zu berechnen. Die Prognosen umfassen Detailinformationen auf Positionsebene und übergeordnete Informationen über eine Branche oder das Unternehmen als Ganzes. 3.1 Kriterien für die Bewertung der Projektergebnisse Abhängig von der Auswahl der Verarbeitungsoptionen und der Trends und Muster in den Verkaufsdaten sind einige Prognosemethoden für einen bestimmten historischen Datensatz besser als andere. Eine für ein Produkt geeignete Prognosemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Sie können feststellen, dass eine Prognosemethode, die gute Ergebnisse in einem Stadium eines Produktlebenszyklus bereitstellt, über den gesamten Lebenszyklus hinweg angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten: Prozent der Genauigkeit (POA). Mittlere absolute Abweichung (MAD). Diese beiden Leistungsbewertungsmethoden erfordern historische Verkaufsdaten für einen angegebenen Zeitraum. Dieser Zeitraum wird als Halteperiode oder Periode der besten Passung bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche Prognosemethode bei der nächsten Prognoseprojektion verwendet wird. Diese Empfehlung ist spezifisch für jedes Produkt und kann von einer Prognosegeneration zur nächsten wechseln. 3.1.1 Best Fit Das System empfiehlt die Best-Fit-Prognose, indem die ausgewählten Prognosemethoden auf die Vergangenheit des Bestellverlaufs angewendet und die Prognosesimulation mit dem aktuellen Verlauf verglichen werden. Wenn Sie eine Best-Fit-Prognose generieren, vergleicht das System die tatsächlichen Kundenauftragshistorien mit Prognosen für einen bestimmten Zeitraum und berechnet, wie genau die einzelnen Prognosemethoden den Umsatz prognostizieren. Dann empfiehlt das System die genaueste Prognose als die beste Passform. Diese Grafik veranschaulicht die besten Anpassungsprognosen: Abbildung 3-1 Best-Fit-Prognose Das System verwendet diese Sequenz von Schritten, um die beste Anpassung zu ermitteln: Verwenden Sie jede angegebene Methode, um eine Prognose für die Halteperiode zu simulieren. Vergleichen Sie die tatsächlichen Verkäufe mit den simulierten Prognosen für die Halteperiode. Berechnen Sie die POA oder die MAD, um zu bestimmen, welche Prognosemethode am ehesten mit den bisherigen tatsächlichen Umsätzen übereinstimmt. Das System verwendet entweder POA oder MAD, basierend auf den Verarbeitungsoptionen, die Sie auswählen. Empfehlen Sie eine Best-Fit-Prognose durch die POA, die am nächsten zu 100 Prozent (über oder unter) oder die MAD, die am nächsten zu Null ist. 3.2 Prognosemethoden JD Edwards EnterpriseOne Forecast Management nutzt 12 Methoden zur quantitativen Prognose und zeigt an, welche Methode die beste Prognosesituation bietet. Dieser Abschnitt behandelt: Methode 1: Prozent über dem letzten Jahr. Methode 2: Berechnet Prozent über Letztes Jahr. Methode 3: Letztes Jahr zu diesem Jahr. Methode 4: Gleitender Durchschnitt. Methode 5: Lineare Approximation. Methode 6: Least Squares Regression. Methode 7: Zweite Grad Approximation. Methode 8: Flexible Methode. Methode 9: Gewichteter gleitender Durchschnitt. Methode 10: Lineare Glättung. Methode 11: Exponentielle Glättung. Methode 12: Exponentielle Glättung mit Trend - und Saisonalität. Geben Sie die Methode an, die Sie in den Verarbeitungsoptionen für das Prognosegenerierungsprogramm (R34650) verwenden möchten. Die meisten dieser Methoden bieten eine begrenzte Kontrolle. Zum Beispiel können Sie das Gewicht, das auf die jüngsten historischen Daten oder den Zeitraum der historischen Daten, die in den Berechnungen verwendet wird, platziert werden. Die Beispiele in dem Leitfaden zeigen die Berechnungsprozedur für jede der verfügbaren Prognosemethoden an, wenn ein identischer Satz von historischen Daten vorliegt. Die Methodenbeispiele im Leitfaden verwenden einen Teil oder alle dieser Datensätze, die historische Daten der letzten zwei Jahre sind. Die Prognose geht ins nächste Jahr. Diese Verkäufe Geschichte Daten ist stabil mit kleinen saisonalen Zunahmen im Juli und Dezember. Dieses Muster ist charakteristisch für ein reifes Produkt, das sich der Veralterung nähern könnte. 3.2.1 Methode 1: Prozentsatz über letztem Jahr Diese Methode verwendet die Prozentsatz über letztes Jahr Formel, um jede Prognoseperiode mit der angegebenen prozentualen Erhöhung oder Abnahme zu multiplizieren. Zur Prognose der Nachfrage, erfordert diese Methode die Anzahl der Perioden für die beste Passform plus ein Jahr der Umsatz Geschichte. Diese Methode ist nützlich, um die Nachfrage nach saisonalen Produkten mit Wachstum oder Rückgang prognostizieren. 3.2.1.1 Beispiel: Methode 1: Prozentsatz über dem letzten Jahr Die Formel "Prozent über letztes Jahr" multipliziert die Umsatzdaten des Vorjahres mit einem Faktor, den Sie angeben, und dann Projekte, die sich über das nächste Jahr ergeben. Diese Methode kann in der Budgetierung nützlich sein, um den Einfluss einer bestimmten Wachstumsrate zu simulieren, oder wenn die Verkaufsgeschichte eine signifikante saisonale Komponente aufweist. Prognose Spezifikationen: Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die Verkaufsverlaufsdaten der letzten Jahre um 10 Prozent zu erhöhen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Übereinstimmung) erforderlich sind, die Sie angeben. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Februarprognose entspricht 117 mal 1,1 128,7 gerundet auf 129. Die Märzprognose entspricht 115 mal 1,1 126,5 gerundet auf 127. 3.2.2 Methode 2: Berechneter Prozentsatz über letztem Jahr Diese Methode verwendet den berechneten Prozentsatz Letztes Jahr Formel, um die vergangenen Verkäufe von bestimmten Perioden mit Verkäufen aus den gleichen Perioden des Vorjahres zu vergleichen. Das System ermittelt einen prozentualen Anstieg oder Abfall und multipliziert dann jede Periode mit dem Prozentsatz, um die Prognose zu bestimmen. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden der Kundenauftragshistorie plus einem Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um die kurzfristige Nachfrage nach Saisonartikeln mit Wachstum oder Rückgang prognostizieren. 3.2.2.1 Beispiel: Methode 2: Berechneter Prozentsatz über Letztes Jahr Die Formel des berechneten Prozentsatzes über dem letzten Jahr multipliziert Umsatzdaten des Vorjahres mit einem Faktor, der vom System berechnet wird, und dann projiziert er das Ergebnis für das nächste Jahr. Diese Methode könnte bei der Projektion der Auswirkungen der Ausweitung der jüngsten Wachstumsrate für ein Produkt in das nächste Jahr nützlich sein, während ein saisonales Muster, das in der Verkaufsgeschichte vorhanden ist. Prognose Spezifikationen: Bereich der Umsatzgeschichte für die Berechnung der Wachstumsrate zu verwenden. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die Verkaufsgeschichte der letzten vier Perioden mit denselben vier Perioden des Vorjahres zu vergleichen. Verwenden Sie das berechnete Verhältnis, um die Projektion für das nächste Jahr zu machen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist die Vorgeschichte, die bei der Prognoseberechnung verwendet wird: n 4: Februar-Prognose entspricht 117 mal 0,9766 114,26 gerundet auf 114. März-Prognose entspricht 115 mal 0,9766 112,31 gerundet auf 112. 3.2.3 Methode 3: Letztes Jahr in diesem Jahr Diese Methode wird verwendet Letzten Jahren Umsatz für die nächsten Jahre Prognose. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden, die am besten geeignet sind, plus einem Jahr der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit Niveau Nachfrage oder saisonale Nachfrage ohne Trend prognostizieren. 3.2.3.1 Beispiel: Methode 3: Letztes Jahr zu diesem Jahr Die Formel "Letztes Jahr in diesem Jahr" kopiert die Verkaufsdaten des Vorjahres bis zum nächsten Jahr. Diese Methode könnte in der Budgetierung nützlich sein, um Verkäufe auf dem gegenwärtigen Niveau zu simulieren. Das Produkt ist reif und hat keinen Trend auf lange Sicht, aber ein erhebliches saisonales Nachfrage-Muster könnte existieren. Vorhersagevorgaben: Keine. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist Geschichte in der Prognose Berechnung verwendet: Januar-Prognose entspricht Januar des letzten Jahres mit einem Prognosewert von 128. Februar-Prognose entspricht Februar des letzten Jahres mit einem Prognosewert von 117. März-Prognose entspricht März des letzten Jahres mit einem Prognosewert von 115. 3.2.4 Methode 4: Moving Average Diese Methode verwendet die Moving Average-Formel, um die angegebene Anzahl von Perioden zu berechnen, um die nächste Periode zu projizieren. Sie sollten es häufig neu berechnen (monatlich oder mindestens vierteljährlich), um den sich ändernden Bedarf zu reflektieren. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden, die am besten passen, plus die Anzahl der Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach reifen Produkten ohne Trend prognostizieren. 3.2.4.1 Beispiel: Methode 4: Moving Average Moving Average (MA) ist eine beliebte Methode zur Mittelung der Ergebnisse der letzten Verkaufsgeschichte, um eine Projektion kurzfristig zu bestimmen. Die MA-Prognosemethode bleibt hinter Trends zurück. Forecast Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte zeigt starke Trend-oder saisonale Muster. Diese Methode funktioniert besser für Kurzstrecken-Prognosen von reifen Produkten als für Produkte, die in den Wachstums-oder Obsoleszenz Stufen des Lebenszyklus sind. Prognosespezifikationen: n entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Es resultiert in einer stabilen Prognose, ist aber langsam zu erkennen Verschiebungen in der Höhe des Umsatzes. Umgekehrt ist ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen im Umsatzniveau zu reagieren, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Erforderliche Verkaufsgeschichte: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Februar-Prognose entspricht (114 119 137 125) 4 123,75 gerundet auf 124. März-Prognose entspricht (119 137 125 124) 4 126,25 gerundet auf 126. 3.2.5 Methode 5: Lineare Approximation Diese Methode Verwendet die Formel zur linearen Approximation, um einen Trend aus der Anzahl der Perioden des Kundenauftragsverlaufs zu berechnen und diesen Trend zur Prognose zu projizieren. Sie sollten den Trend monatlich neu berechnen, um Änderungen in Trends zu erkennen. Diese Methode erfordert die Anzahl der Perioden der besten Übereinstimmung plus die Anzahl der angegebenen Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach neuen Produkten oder Produkten mit konstanten positiven oder negativen Trends, die nicht aufgrund von saisonalen Schwankungen sind prognostiziert. 3.2.5.1 Beispiel: Methode 5: Lineare Approximation Lineare Approximation berechnet einen Trend, der auf zwei Verkaufsverlaufsdatenpunkten basiert. Diese beiden Punkte definieren eine gerade Linie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, weil Langstreckenvorhersagen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Prognosespezifikationen: n entspricht dem Datenpunkt in der Verkaufsgeschichte, der mit dem aktuellsten Datenpunkt verglichen wird, um einen Trend zu identifizieren. Geben Sie beispielsweise n 4 an, um die Differenz zwischen Dezember (jüngste Daten) und August (vier Perioden vor Dezember) als Grundlage für die Berechnung des Trends zu verwenden. Mindestens erforderlicher Umsatzverlauf: n plus 1 plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (1-mal 2) 139. Februar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (2-mal 2) 141. März-Prognose Dezember des vergangenen Jahres 1 (Trend) entspricht 137 (3 mal 2) 143. 3.2.6 Methode 6: Least Squares Regression Die Methode der Least Squares Regression (LSR) leitet eine Gleichung ab, die eine lineare Beziehung zwischen den historischen Verkaufsdaten beschreibt Und der Lauf der Zeit. LSR paßt auf eine Zeile zum ausgewählten Datenbereich, so daß die Summe der Quadrate der Differenzen zwischen den tatsächlichen Verkaufsdatenpunkten und der Regressionsgeraden minimiert wird. Die Prognose ist eine Projektion dieser Geraden in die Zukunft. Diese Methode erfordert Verkaufsdatenhistorie für den Zeitraum, der durch die Anzahl der bestmöglichen Perioden plus der angegebenen Anzahl von historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenpunkte. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn ein linearer Trend in den Daten ist. 3.2.6.1 Beispiel: Methode 6: Least Squares Regression Lineare Regression oder Least Squares Regression (LSR) ist die beliebteste Methode, um einen linearen Trend in historischen Verkaufsdaten zu identifizieren. Das Verfahren berechnet die Werte für a und b, die in der Formel verwendet werden sollen: Diese Gleichung beschreibt eine Gerade, wobei Y für Verkäufe steht und X für Zeit steht. Lineare Regression ist langsam zu erkennen, Wendepunkte und Schritt Funktion Verschiebungen in der Nachfrage. Die lineare Regression passt auf eine gerade Linie zu den Daten, selbst wenn die Daten saisonal oder besser durch eine Kurve beschrieben werden. Wenn Verkaufsgeschichte-Daten einer Kurve folgen oder ein starkes saisonales Muster aufweisen, treten Vorhersage-Bias und systematische Fehler auf. Prognosespezifikationen: n entspricht den Perioden der Verkaufsgeschichte, die bei der Berechnung der Werte für a und b verwendet werden. Geben Sie beispielsweise n 4 an, um die Historie von September bis Dezember als Grundlage für die Berechnungen zu verwenden. Wenn Daten verfügbar sind, würde ein grßeres n (wie beispielsweise n 24) gewöhnlich verwendet werden. LSR definiert eine Zeile für so wenige wie zwei Datenpunkte. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Mindestens erforderlicher Umsatzverlauf: n Perioden plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Märzprognose entspricht 119,5 (7 mal 2,3) 135,6 auf 136 gerundet. 3.2.7 Methode 7: Zweite Grad Approximation Um die Prognose zu projizieren, verwendet diese Methode die Zweite Grad-Approximationsformel, um eine Kurve darzustellen Die auf der Anzahl der Verkaufsphasen beruht. Diese Methode erfordert die Anzahl der Perioden am besten geeignet plus die Anzahl der Perioden der Verkaufsauftragsverlauf mal drei. Diese Methode ist nicht geeignet, die Nachfrage nach einem langfristigen Zeitraum zu prognostizieren. 3.2.7.1 Beispiel: Methode 7: Second Degree Approximation Die lineare Regression ermittelt Werte für a und b in der Prognoseformel Y a b X mit dem Ziel, eine Gerade an die Verkaufsgeschichtsdaten anzupassen. Zweite Grad Approximation ist ähnlich, aber dieses Verfahren bestimmt Werte für a, b und c in dieser Prognose Formel: Y a b X c X 2 Das Ziel dieses Verfahrens ist es, eine Kurve auf die Verkaufsgeschichte Daten passen. Dieses Verfahren ist nützlich, wenn sich ein Produkt im Übergang zwischen den Lebenszyklusstufen befindet. Wenn sich beispielsweise ein neues Produkt von der Einführung in die Wachstumsstadien bewegt, könnte sich die Absatzentwicklung beschleunigen. Wegen des Termes der zweiten Ordnung kann die Prognose schnell an die Unendlichkeit heranreichen oder auf Null fallen (abhängig davon, ob der Koeffizient c positiv oder negativ ist). Diese Methode ist nur kurzfristig nutzbar. Prognose Spezifikationen: die Formel finden a, b und c, um eine Kurve auf genau drei Punkte passen. Sie geben n die Anzahl der Zeitperioden an, die in jedem der drei Punkte akkumuliert werden sollen. In diesem Beispiel ist n 3. Die tatsächlichen Verkaufsdaten für April bis Juni sind in den ersten Punkt Q1 zusammengefasst. Juli bis September werden addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve ist an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 mal n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passform) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mai) (Jun), die 125 122 137 384 Q2 (Jul) (Aug) (Sep) entspricht 140 129 entspricht Der nächste Schritt besteht darin, die drei Koeffizienten a, b und c zu berechnen, die in der Prognoseformel Y ab X c X 2 verwendet werden sollen. Q1, Q2 und Q3 werden auf der Grafik dargestellt, wobei die Zeit auf der horizontalen Achse aufgetragen ist. Q1 stellt die gesamten historischen Verkäufe für April, Mai und Juni dar und ist auf X 1 Q2 dargestellt, entspricht Juli bis September Q3 entspricht Oktober bis Dezember und Q4 repräsentiert Januar bis März. Fig. 3-2 Plotten von Q1, Q2, Q3 und Q4 für die Annäherung zweiter Ordnung Drei Gleichungen beschreiben die drei Punkte auf dem Graphen: (1) Q1 (Q2 a 2b 4c) (3) Q3 a bX cX 2 mit X 3 (Q3 a 3b 9c) Lösen Sie die drei Gleichungen gleichzeitig (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersetzen Sie die Gleichung 1 (1) aus Gleichung 2 (2) und lösen Sie für b: B in Gleichung (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Schließe diese Gleichungen für a und b in Gleichung (1): (1) Q3 ndash ein (Q2 ndash Q2) 2 Das zweite Approximationsverfahren berechnet a, b und c wie folgt: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) (Q2 ndash Q1) ) (N3) n0 (n3) n0 (n2) n0 (n3) n0 (n) n (n) 370 ndash 400) (384 ndash 400) 2 ndash23 Dies ist eine Berechnung der Näherungsprognose des zweiten Grades: Y a bX cX 2 322 85X (ndash23) (X 2) Wenn X 4, Q4 322 340 ndash 368 294. Die Prognose entspricht 294 3 98 pro Zeitraum. Wenn X 5, Q5 322 425 ndash 575 172. Die Prognose entspricht 172 3 58,33 auf 57 pro Periode gerundet. Wenn X 6, Q6 322 510 ndash 828 4. Die Prognose ist 4 3 1,33 gerundet auf 1 pro Periode. Dies ist die Prognose für das nächste Jahr, Letztes Jahr zu diesem Jahr: 3.2.8 Methode 8: Flexible Methode Mit dieser Methode können Sie die bestmögliche Anzahl von Perioden des Verkaufsauftragsverlaufs auswählen, die n Monate vor dem Startdatum der Prognose beginnt Wenden Sie einen prozentualen Anstieg oder Abnahme Multiplikationsfaktor, mit dem die Prognose zu ändern. Diese Methode ähnelt Methode 1, Prozent über dem letzten Jahr, außer dass Sie die Anzahl der Perioden angeben können, die Sie als Basis verwenden. Abhängig davon, was Sie als n wählen, erfordert diese Methode Perioden am besten geeignet plus die Anzahl der angegebenen Perioden der Verkaufsdaten. Diese Methode ist nützlich, um die Nachfrage nach einem geplanten Trend vorherzusagen. 3.2.8.1 Beispiel: Methode 8: Flexible Methode Die Flexible Methode (Prozentsatz über n Monate vor) ähnelt der Methode 1, Prozent über dem letzten Jahr. Beide Methoden multiplizieren Verkaufsdaten aus einem früheren Zeitraum mit einem von Ihnen angegebenen Faktor und projizieren dieses Ergebnis dann in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum des Vorjahres. Sie können auch die Flexible Methode verwenden, um einen anderen Zeitraum als denselben Zeitraum des letzten Jahres anzugeben, der als Grundlage für die Berechnungen verwendet werden soll. Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die vorherigen Verkaufsverlaufsdaten um 10 Prozent zu erhöhen. Basiszeitraum. Zum Beispiel bewirkt n 4, dass die erste Prognose im September des letzten Jahres auf Verkaufsdaten basiert. Mindestens erforderliche Verkaufsgeschichte: Anzahl der Perioden bis zur Basisperiode plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). 3.2.9 Methode 9: Gewichteter gleitender Durchschnitt Die gewichtete gleitende Durchschnittsformel ist vergleichbar mit Methode 4, Gleitende Durchschnittsformel, da sie im Vergleich zum vorausgegangenen Geschäftsverlauf die vorhergehende Verkaufshistorie projiziert. Mit dieser Formel können Sie jedoch Gewichte für jede der vorherigen Perioden zuordnen. Diese Methode erfordert die Anzahl der gewählten Perioden plus die Anzahl der Perioden, die am besten zu den Daten passen. Ähnlich wie bei Moving Average, liegt diese Methode hinter den Nachfrage-Trends, so dass diese Methode nicht für Produkte mit starken Trends oder Saisonalität empfohlen wird. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit einer Nachfrage zu prognostizieren, die relativ hoch ist. 3.2.9.1 Beispiel: Methode 9: Gewichteter gleitender Durchschnitt Die Methode des gewichteten gleitenden Durchschnitts (WMA) ähnelt Methode 4, Gleitender Durchschnitt (MA). Sie können jedoch den historischen Daten bei Verwendung von WMA ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkäufe Geschichte, um zu einer Projektion für die kurzfristige kommen. Jüngere Daten sind in der Regel ein größeres Gewicht als ältere Daten zugeordnet, so dass WMA ist besser auf Veränderungen in der Ebene des Umsatzes. Allerdings Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trends oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. Die Anzahl der Perioden der Verkaufsgeschichte (n), die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Ein solcher Wert führt zu einer stabilen Prognose, aber es ist langsam, Veränderungen im Absatzniveau zu erkennen. Umgekehrt reagiert ein kleiner Wert für n (wie 3) schneller auf Verschiebungen des Umsatzniveaus, doch könnte die Prognose so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Die Gesamtzahl der Perioden für die Verarbeitungsoption rdquo14 - Perioden bis includerdquo sollte 12 Monate nicht überschreiten. Das Gewicht, das jeder der historischen Datenperioden zugeordnet ist. Die zugeordneten Gewichte müssen 1,00 betragen. Zum Beispiel, wenn n 4, weisen Sie Gewichte von 0,50, 0,25, 0,15 und 0,10 zu, wobei die jüngsten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Die Januarprognose entspricht (131 mal 0,10) (114 mal 0,15) (119 mal 0,25) (137 mal 0,50) (0,10 0,15 0,25 0,50) 128,45 auf 128 gerundet (119 mal 0,10) (128 mal 0,15) (128 mal 0,25) (128 mal 0,50) 1 128,45 abgerundet auf 128. März-Vorhersage entspricht 119 mal 0,10 (137 mal 0,15) (128 mal 0,25) 128. 3.2.10 Methode 10: Lineare Glättung Diese Methode berechnet einen gewichteten Durchschnitt der bisherigen Verkaufsdaten. Bei dieser Methode wird die Anzahl der Perioden der Kundenauftragshistorie (von 1 bis 12) verwendet, die in der Bearbeitungsoption angegeben ist. Das System verwendet eine mathematische Progression, um Daten im Bereich von dem ersten (am wenigsten Gewicht) bis zum letzten Gewicht (das meiste Gewicht) zu wiegen. Das System projiziert diese Informationen zu jeder Periode in der Prognose. Diese Methode benötigt für die Anzahl der Perioden, die in der Verarbeitungsoption angegeben sind, die jeweils am besten passende Monatshälfte plus den Kundenauftragshistorie. 3.2.10.1 Beispiel: Methode 10: Lineare Glättung Diese Methode ähnelt Methode 9, WMA. Jedoch wird anstelle der willkürlichen Zuweisung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichtungen zuzuweisen, die linear abnehmen und auf 1,00 summieren. Das Verfahren berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurze Zeit zu gelangen. Wie alle linearen gleitenden durchschnittlichen Prognosetechniken, Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trend-oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. N entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Basis für die Projektion in die nächste Zeitperiode zu verwenden. Das System vergibt automatisch die Gewichte den historischen Daten, die linear abnehmen und auf 1,00 summieren. Wenn z. B. n gleich 4 ist, weist das System Gewichte von 0,4, 0,3, 0,2 und 0,1 zu, wobei die neuesten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. 3.2.11 Methode 11: Exponentialglättung Diese Methode berechnet einen geglätteten Durchschnitt, der zu einer Schätzung wird, die das allgemeine Umsatzniveau über die ausgewählten historischen Datenperioden darstellt. Diese Methode erfordert Umsatzdatenhistorie für den Zeitraum, der durch die Anzahl der bestmöglichen Perioden plus die Anzahl der angegebenen historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenperioden. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn kein linearer Trend in den Daten vorhanden ist. 3.2.11.1 Beispiel: Methode 11: Exponentielle Glättung Diese Methode ist ähnlich wie Methode 10, Lineare Glättung. In Linear Smoothing weist das System Gewichte auf, die linear auf die historischen Daten zurückgehen. Bei exponentieller Glättung weist das System Gewichte auf, die exponentiell zerfallen. Die Prognose ist ein gewichteter Durchschnitt der tatsächlichen Umsätze der Vorperiode und der Prognose der Vorperiode. Die Prognose für die Exponential-Glättungsprognose lautet: Alpha ist das Gewicht, das auf die tatsächlichen Verkäufe für den vorherigen Zeitraum angewendet wird. (1 ndash alpha) ist das Gewicht, das auf die Prognose für den vorherigen Zeitraum angewendet wird. Werte für Alpha reichen von 0 bis 1 und fallen üblicherweise zwischen 0,1 und 0,4. Die Summe der Gewichte beträgt 1,00 (alpha (1 ndash alpha) 1). Sie sollten einen Wert für die Glättungskonstante, alpha, zuweisen. Wenn Sie keinen Wert für die Glättungskonstante zuweisen, berechnet das System einen angenommenen Wert, der auf der Anzahl der Perioden des Verkaufsverlaufs basiert, die in der Verarbeitungsoption angegeben ist. Alpha entspricht der Glättungskonstante, die verwendet wird, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Grße der Verkäufe zu berechnen. Werte für den Alphabereich von 0 bis 1. n entspricht dem Bereich der Verkaufsgeschichtsdaten, der in die Berechnungen aufzunehmen ist. Im Allgemeinen reicht ein Jahr der Umsatzverlaufsdaten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Exponentielle Glättung kann eine Prognose erzeugen, die auf nur einem historischen Datenpunkt basiert. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. 3.2.12 Methode 12: Exponentielle Glättung mit Trend - und Saisonalität Diese Methode berechnet einen Trend, einen saisonalen Index und einen exponentiell geglätteten Durchschnitt aus dem Kundenauftragsverlauf. Das System wendet dann eine Projektion des Trends auf die Prognose an und passt sich dem Saisonindex an. Diese Methode erfordert die Anzahl der Perioden am besten geeignet plus zwei Jahre der Umsatzdaten und ist nützlich für Elemente, die sowohl Trend und Saisonalität in der Prognose haben. Sie können den Alpha - und Betafaktor eingeben oder das System berechnen lassen. Alpha - und Beta-Faktoren sind die Glättungskonstante, die das System verwendet, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Größenordnung des Umsatzes (alpha) und die Trendkomponente der Prognose (Beta) zu berechnen. 3.2.12.1 Beispiel: Methode 12: Exponentielle Glättung mit Trend - und Saisonalität Diese Methode ähnelt Methode 11, Exponentialglättung, indem ein geglätteter Mittelwert berechnet wird. Das Verfahren 12 enthält jedoch auch einen Term in der Prognose-Gleichung, um einen geglätteten Trend zu berechnen. Die Prognose setzt sich aus einem geglätteten Durchschnitt, der für einen linearen Trend angepasst wird. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch saisonbedingt angepasst. Alpha entspricht der Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für das allgemeine Niveau oder die Grße der Verkäufe verwendet wird. Werte für Alpha reichen von 0 bis 1. Beta entspricht der Glättungskonstante, die beim Berechnen des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Werte für Beta reichen von 0 bis 1. Ob ein saisonaler Index auf die Prognose angewendet wird. Alpha und beta sind voneinander unabhängig. Sie müssen nicht auf 1,0 Summe. Mindestens erforderlicher Umsatzverlauf: Ein Jahr plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). Wenn zwei oder mehr Jahre historischer Daten vorliegen, verwendet das System zwei Jahre Daten in den Berechnungen. Methode 12 verwendet zwei Exponential-Glättungsgleichungen und einen einfachen Mittelwert, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Index zu berechnen. Ein exponentiell geglätteter Durchschnitt: Ein einfacher durchschnittlicher saisonaler Index: Abbildung 3-3 Einfacher mittlerer saisonaler Index Die Prognose wird dann unter Verwendung der Ergebnisse der drei Gleichungen berechnet: L ist die Länge der Saisonalität (L entspricht 12 Monaten oder 52 Wochen). T die aktuelle Zeitspanne ist. M ist die Anzahl der Zeiträume in die Zukunft der Prognose. S ist der multiplikative saisonale Anpassungsfaktor, der auf den entsprechenden Zeitraum indiziert ist. In dieser Tabelle wird der Verlauf der Prognoseberechnung aufgelistet: Dieser Abschnitt bietet einen Überblick über die Prognoseauswertungen und erörtert: Sie können Prognosemethoden auswählen, um bis zu 12 Prognosen für jedes Produkt zu generieren. Jede Prognosemethode kann eine etwas andere Projektion erzeugen. Wenn Tausende von Produkten prognostiziert werden, ist eine subjektive Entscheidung unpraktisch, welche Prognose in den Plänen für jedes Produkt verwenden. Das System wertet automatisch die Leistung für jede von Ihnen ausgewählte Prognosemethode und für jedes von Ihnen prognostizierte Produkt aus. Sie können zwischen zwei Leistungskriterien wählen: MAD und POA. MAD ist ein Maß für den Prognosefehler. POA ist ein Maß für die Vorhersage. Diese beiden Leistungsbewertungsverfahren erfordern für einen von Ihnen festgelegten Zeitraum tatsächliche Umsatzverlaufsdaten. Der Zeitraum der jüngsten Geschichte für die Auswertung verwendet wird als eine Übergangszeit oder Periode der besten Passform. Um die Performance einer Prognosemethode zu messen, verwendet das System die Prognoseformeln, um eine Prognose für die historische Halteperiode zu simulieren. Stellt einen Vergleich zwischen den tatsächlichen Verkaufsdaten und der simulierten Prognose für den Haltezeitraum her. Wenn Sie mehrere Prognosemethoden auswählen, tritt dieser Prozess für jede Methode auf. Mehrere Prognosen werden für die Halteperiode berechnet und im Vergleich zu der bekannten Verkaufsgeschichte für den gleichen Zeitraum. Für die Verwendung in den Plänen wird die Prognosemethode empfohlen, die die optimale Übereinstimmung zwischen der Prognose und dem tatsächlichen Umsatz während des Haltezeitraums liefert. Diese Empfehlung ist spezifisch für jedes Produkt und kann sich jedes Mal ändern, wenn Sie eine Prognose generieren. 3.3.1 Mittlere Absolutabweichung Die mittlere Absolutabweichung (MAD) ist der Mittelwert (oder Mittelwert) der Absolutwerte (oder Größen) der Abweichungen (oder Fehler) zwischen Ist - und Prognosedaten. MAD ist ein Maß für die durchschnittliche Größe der zu erwartenden Fehler bei einer Prognosemethode und einem Datenverlauf. Da bei der Berechnung absolute Werte verwendet werden, werden positive Fehler nicht negativ ausgewertet. Beim Vergleich mehrerer Prognosemethoden ist derjenige mit dem kleinsten MAD der zuverlässigste für dieses Produkt für diesen Haltezeitraum. Wenn die Prognose unvoreingenommen ist und Fehler normal verteilt sind, existiert eine einfache mathematische Beziehung zwischen MAD und zwei anderen gemeinsamen Verteilungsmaßstäben, bei denen es sich um Standardabweichung und Mean Squared Error handelt. Beispiel: MAD (Sigma (Actual) ndash (Prognose)) n Standardabweichung, (sigma) cong 1.25 MAD Mean Squared Fehler cong ndashsigma2 Dieses Beispiel zeigt die Berechnung von MAD für zwei der Prognosemethoden an. In diesem Beispiel wird davon ausgegangen, dass Sie in der Verarbeitungsoption angegeben haben, dass die Halteperiodenlänge (Perioden der besten Übereinstimmung) fünf Perioden entspricht. 3.3.1.1 Methode 1: Letztes Jahr zu diesem Jahr Diese Tabelle ist Geschichte, die bei der Berechnung von MAD verwendet wird. Perioden von Best Fit 5: Mittlere absolute Abweichung ist gleich (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. Wenn die Prognosen konsequent zu hoch sind, sammeln sich die Vorräte an und die Lagerhaltungskosten steigen. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In Services ist die Größenordnung der Prognosefehler in der Regel wichtiger als die prognostizierte Bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.
No comments:
Post a Comment